On the SIG dimension of trees under $L_{\infty}$ metric

نویسندگان

  • L. Sunil Chandran
  • Rajesh Hemant Chitnis
  • Ramanjit Kumar
چکیده

Let P , where |P| ≥ 2, be a set of points in d-dimensional space with a given metric ρ. For a point p ∈ P , let rp be the distance of p with respect to ρ from its nearest neighbour in P . Let B(p, rp) be the open ball with respect to ρ centered at p and having the radius rp. We define the sphere-of-influence graph (SIG) of P as the intersection graph of the family of sets {B(p, rp) | p ∈ P}. Given a graph G, a set of points PG in d-dimensional space with the metric ρ is called a d−dimensional SIG representation of G, if G is the SIG of PG. It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have an SIG representation under L∞ metric in some space of finite dimension. The SIG dimension under L∞ metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG representation under the L∞ metric. It is denoted as SIG∞(G). We study the SIG dimension of trees under L∞ metric and answer an open problem posed by Michael and Quint (Discrete applied Mathematics: 127, pages 447-460, 2003). Let T be a tree with atleast two vertices. For each v ∈ V (T ), let leaf-degree(v) denote the number of neighbours of v that are leaves. We define the maximum leaf-degree as α(T ) = maxx∈V (T ) leaf-degree(x). Let S = {v ∈ V (T ) | leaf-degree(v) = α}. If |S| = 1, we define β(T ) = α(T ) − 1. Otherwise define β(T ) = α(T ). We show that for a tree T , SIG∞(T ) = ⌈log2(β + 2)⌉ where β = β(T ), provided β is not of the form 2 − 1, for some positive integer k ≥ 1. If β = 2 − 1, then SIG∞(T ) ∈ {k, k + 1}. We show that both values are possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of $L_1$-to-$L_1$ and $L_\infty$-to-$L_\infty$ interval observers for (delayed) Markov jump linear systems

We exploit recent results on the stability and performance analysis of positive Markov jump linear systems (MJLS) for the design of interval observers for MJLS with and without delays. While the conditions for the L1 performance are necessary and sufficient, those for the L∞ performance are only sufficient. All the conditions are stated as linear programs that can be solved very efficiently. Tw...

متن کامل

Characterization of Lie higher Derivations on $C^{*}$-algebras

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

An Algorithm for $L_\infty$ Approximation by Step Functions

We give an algorithm for determining an optimal step function approximation of weighted data, where the error is measured with respect to the L∞ norm. The algorithm takes Θ(n+ log n · b(1 + log n/b)) time and Θ(n) space, where b is the number of steps. Thus the time is Θ(n log n) in the worst case and Θ(n) when b = O(n/ log n log log n). A minor change determines the optimal reduced isotonic re...

متن کامل

Multidimensional $\beta$-skeletons in $L_1$ and $L_{\infty}$ metric

The β-skeleton {Gβ(V )} for a point set V is a family of geometric graphs, defined by the notion of neighborhoods parameterized by real number 0 < β < ∞. By using the distance-based version definition of β-skeletons we study those graphs for a set of points in R d space with l1 and l∞ metrics. We present algorithms for the entire spectrum of β values and we discuss properties of lens-based and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0910.5380  شماره 

صفحات  -

تاریخ انتشار 2009